75 research outputs found

    In Utero Domoic Acid Toxicity: A Fetal Basis to Adult Disease in the California Sea Lion (Zalophus californianus)

    Get PDF
    California sea lions have been a repeated subject of investigation for early life toxicity, which has been documented to occur with increasing frequency from late February through mid-May in association with organochlorine (PCB and DDT) poisoning and infectious disease in the 1970’s and domoic acid poisoning in the last decade. The mass early life mortality events result from the concentrated breeding grounds and synchronization of reproduction over a 28 day post partum estrus cycle and 11 month in utero phase. This physiological synchronization is triggered by a decreasing photoperiod of 11.48 h/day that occurs approximately 90 days after conception at the major California breeding grounds. The photoperiod trigger activates implantation of embryos to proceed with development for the next 242 days until birth. Embryonic diapause is a selectable trait thought to optimize timing for food utilization and male migratory patterns; yet from the toxicological perspective presented here also serves to synchronize developmental toxicity of pulsed environmental events such as domoic acid poisoning. Research studies in laboratory animals have defined age-dependent neurotoxic effects during development and windows of susceptibility to domoic acid exposure. This review will evaluate experimental domoic acid neurotoxicity in developing rodents and, aided by comparative allometric projections, will analyze potential prenatal toxicity and exposure susceptibility in the California sea lion. This analysis should provide a useful tool to forecast fetal toxicity and understand the impact of fetal toxicity on adult disease of the California sea lion

    Domoic Acid Transfer to Milk: Evaluation of a Potential Route of Neonatal Exposure

    Get PDF
    Domoic acid (DA), produced by the diatom genus Pseudo-nitzschia, is a glutamate analog and a neurotoxin in humans. During diatom blooms, DA can contaminate filter-feeding organisms, such as shellfish, and can be transferred by ingestion to higher trophic levels. Several intoxication events involving both humans and various marine mammals have been attributed to DA. Affected organisms show neurological symptoms such as seizures, ataxia, headweaving, and stereotypic scratching, as well as prolonged deficits in memory and learning. Neonatal animals have been shown to be substantially more sensitive to DA than adults. However, it has not been demonstrated whether DA can be transferred to nursing young from DA-exposed mothers. This study demonstrates transfer of DA from spiked milk (0.3 and 1.0 mg/kg) to the plasma of nursing neonatal rats and an overall longer DA retention in milk than in plasma after 8 hr in exposed dams. DA was detectable in milk up to 24 hr after exposure (1.0 mg/kg) of the mothers, although the amount of DA transferred to milk after exposure was not sufficient to cause acute symptoms in neonates

    Embryonic Exposure to Domoic Acid Increases the Susceptibility of Zebrafish Larvae to the Chemical Convulsant Pentylenetetrazole

    Get PDF
    BACKGROUND: Domoic acid (DA) is a neurotoxin produced by diatoms of the genus Pseudonitzschia that targets the limbic system to induce tonic–clonic seizures and memory impairment. In utero DA exposure of mice leads to a reduction in seizure threshold to subsequent DA exposures in mid-postnatal life, and similar studies have shown neurotoxic effects in rats that were delayed until adolescence. OBJECTIVE: We used in ovo microinjection of zebrafish (Danio rerio) to characterize the effect of embryonic exposure of DA on seizure-inducing agents later in life as an alternative species model to screen environmental contaminants that might induce a fetal-originating adult disease. METHODS: Embryos were microinjected within hours of fertilization to DA concentrations ranging from 0.12 to 1.26 ng/mg egg weight. Seven days later, the larval animals were characterized for sensitivity to the chemical convulsant pentylenetetrazole (PTZ), an agent that is well-defined in laboratory rodents and, more recently, in zebrafish. RESULTS: In ovo DA exposure, most significantly at 0.4 ng/mg, reduces the latency time until first PTZ seizure in larval fish and increases the severity of seizures as determined by seizure stage and movement parameters. The interaction between in ovo DA exposure and PTZ caused seizure behaviors to individually asymptomatic doses of PTZ (1.0 and 1.25 mM) and DA (0.13 and 0.22 ng/mg). CONCLUSION: These studies demonstrate that in ovo exposure to DA reduces the threshold to chemically induced seizures in larval fish and increases the severity of seizure behavior in a manner that is consistent with in utero studies of laboratory rodents

    Liver genomic responses to ciguatoxin: evidence for activation of Phase I and Phase II detoxification pathways following an acute hypothermic response in mice

    Get PDF
    Ciguatoxins (CTX) are polyether neurotoxins that target voltage-gated sodium channels and are responsible for ciguatera, the most common fish-borne food poisoning in humans. This study characterizes the global transcriptional response of mouse liver to a symptomatic dose (0.26 ng/g) of the highly potent Pacific ciguatoxin-1 (P-CTX-1). At 1 h post-exposure 2.4% of features on a 44K whole genome array were differentially expressed (p ≤ 0.0001), increasing to 5.2% at 4 h and decreasing to 1.4% by 24 h post-CTX exposure. Data were filtered (|fold change| ≥ 1.5 and p ≤ 0.0001 in at least one time point) and a trend set of 1550 genes were used for further analysis. Early gene expression was likely influenced prominently by an acute 4°C decline in core body temperature by 1 h, which resolved by 8 h following exposure. An initial downregulation of 32 different solute carriers, many involved in sodium transport, was observed. Differential gene expression in pathways involving eicosanoid biosynthesis and cholesterol homeostasis was also noted. Cytochrome P450s (Cyps) were of particular interest due to their role in xenobiotic metabolism. Twenty-seven genes, mostly members of Cyp2 and Cyp4 families, showed significant changes in expression. Many Cyps underwent an initial downregulation at 1 h but were quickly and strongly upregulated at 4 and 24 h post-exposure. In addition to Cyps, increases in several glutathione S-transferases were observed, an indication that both phase I and phase II metabolic reactions are involved in the hepatic response to CTX in mice

    Distribution of Brevetoxin (PbTx-3) in Mouse Plasma: Association with High-Density Lipoproteins

    Get PDF
    We investigated the brevetoxin congener PbTx-3 to determine its distribution among carrier proteins, including albumin and blood lipoproteins. Using a radiolabeled brevetoxin tracer (PbTx-3), we found that 39% of the radiolabel remained associated with components in mouse plasma after > 15 kDa cutoff dialysis. Of this portion, only 6.8% was bound to serum albumin. We also examined the binding of brevetoxin to various lipoprotein fractions. Plasma, either spiked with PbTx-3 or from mice treated for 30 min with PbTx-3, was fractionated into different-sized lipoproteins by iodixanol gradient ultracentrifugation. Each fraction was then characterized and quantified by agarose gel electrophoresis and brevetoxin radioimmunoassay, respectively. In both the in vitro and in vivo experiments, the majority of brevetoxin immunoreactivity was restricted to only those gradient fractions that contained high-density lipoproteins (HDLs). Independent confirmation of brevetoxin binding to HDLs was provided by high molecular weight (100 kDa cutoff) dialysis of [(3)H]PbTx-3 from lipoprotein fractions as well as a scintillation proximity assay using [(3)H]PbTx-3 and purified human HDLs. This information on the association of brevetoxins with HDLs provides a new foundation for understanding the process by which the toxin is delivered to and removed from tissues and may permit more effective therapeutic measures to treat intoxication from brevetoxins and the related ciguatoxins

    Neurological Disease Rises from Ocean to Bring Model for Human Epilepsy to Life

    Get PDF
    Domoic acid of macroalgal origin was used for traditional and medicinal purposes in Japan and largely forgotten until its rediscovery in diatoms that poisoned 107 people after consumption of contaminated mussels. The more severely poisoned victims had seizures and/or amnesia and four died; however, one survivor unexpectedly developed temporal lobe epilepsy (TLE) a year after the event. Nearly a decade later, several thousand sea lions have stranded on California beaches with neurological symptoms. Analysis of the animals stranded over an eight year period indicated five clusters of acute neurological poisoning; however, nearly a quarter have stranded individually outside these events with clinical signs of a chronic neurological syndrome similar to TLE. These poisonings are not limited to sea lions, which serve as readily observed sentinels for other marine animals that strand during domoic acid poisoning events, including several species of dolphin and whales. Acute domoic acid poisoning is five-times more prominent in adult female sea lions as a result of the proximity of their year-round breeding grounds to major domoic acid bloom events. The chronic neurological syndrome, on the other hand, is more prevalent in young animals, with many potentially poisoned in utero. The sea lion rookeries of the Channel Islands are at the crossroads of domoic acid producing harmful algal blooms and a huge industrial discharge site for dichlorodiphenyltrichloroethane (DDTs). Studies in experimental animals suggest that chronic poisoning observed in immature sea lions may result from a spatial and temporal coincidence of DDTs and domoic acid during early life stages. Emergence of an epilepsy syndrome from the ocean brings a human epilepsy model to life and provides unexpected insights into interaction with legacy contaminants and expression of disease at different life stages
    corecore